作为细颗粒物(pm2.5)和臭氧(o3)形成的重要前体物,vocs在一定条件下也会对气候变化产生影响。因此,近年来,对vocs的重视程度也越来越高,在出台一系列强有力的法律法规后,京津冀及周边地区、长三角地区等的pm2.5污染已有改善明显,但是与以往相比,pm2.5浓度仍处于高位。与此同时,在京津冀等重点区域,vocs仍然是现阶o3污染生成的主要因素之一。
2017年,原*等部门联合发布了《关于印发<“十三五”挥发性有机物污染防治工作方案>的通知》(环大气〔2017〕121号),文件要求,到2020年,实施重点地区、重点行业vocs污染减排总量下降10%,尤其是橡胶等vocs排放重点行业,在有必要的情况下,人们要结合环境空气质量季节性变化特征,研究制定行业生产调控措施。
1、橡胶工业vocs
橡胶广泛用于制造轮胎、胶管、胶带和电缆等产品,是我国国民经济的重要基础产业之一。但是,炼胶过程中如纤维织物浸胶、烘干、压延和硫化都会产生vocs,此外,在配料和存放时,树脂、溶剂及其他挥发性有机物也会产生有机废气。橡胶工业产生的废气排放量大,污染成分复杂,非甲烷总烃含量高,恶臭成分会对周边环境成严重污染。大气环境的改善迫在眉睫,总量减排势在必行。
2橡胶工业vocs治理技术
橡胶工业产生废气的主要来源包括密炼、硫化以及压延等过程,不同工艺车间产生的废气成分及浓度也存在一定的差异。
目前,橡胶工业vocs的治理方法包括低温等离子技术、吸附-回收技术、冷凝-除雾-催化氧化法、热氧化技术、沸石转轮浓缩吸附-rto协同技术以及低温等离子体-光催化协同技术等。
2.1低温等离子技术
低温等离子技术通过电离产生的活性粒子和废气中的污染物产生作用,以达到分解污染物的目的。以甲苯等代表性有机废气为研究对象,发现在净化300min时,净化率均达到90%。通过介质阻挡放电低温等离子体技术处理vocs,降解率可达99%,降解效果还与电压和气速有关,如果气速从300l/h下降到100l/h,则降解率从78%提高到97%。
虽然低温等离子体技术具有*的性能,被认为是处理vocs的有效方法,但是其通常只适用于大风量、低浓度的有机废气处理,对高浓度有机废气的处理效果并不理想。
2.2吸附回收法
吸附回收法是利用活性炭吸附废气中的有机物,其原理是当有机废气的吸附量达到饱和,利用水蒸汽进行脱附冷凝,以达到回收部分有机物的目的。目前,根据内部结构,常用的活性炭主要分为颗粒活性炭和活性炭纤维,由于活性炭纤维具有非常高的比表面积和孔隙率,因此活性炭纤维吸附效果远高于颗粒活性炭。研究发现,球形活性炭上voc分子的气体饱和吸附容量越大,吸附质所需脱附时间越长,不同voc分子的气体回收难易还与活性炭的内部结构、voc分子本身物性和化性相关。此外,吸附和回收时的温度、气体浓度和气体体积流率都对回收效率有比较大的影响,而且水蒸汽法要比热空气法脱附的效果好。不过,橡胶的vocs中环己烷沸点较低,单一的吸附回收法无法回收环己烷,因此暂未发现单一活性炭吸附法在橡胶vocs治理方面的成功案例。
2.3热氧化法
根据燃烧温度和辅助介质的不同,热氧化法主要分为蓄热式燃烧法(rto)和催化燃烧法(rco),其主要原理是通过直接燃烧或添加催化剂进行燃烧,将有机废气氧化分解为co2和h2o。
2.3.1蓄热式燃烧法。
蓄热式燃烧法(rto)主要是将有机废气加热到不低于760℃,使其氧化分解为二氧化碳和水,同时将产生的热量存储于蓄热体,使蓄热体升温“蓄热”,而这些蓄积的热量可用于后续有机废气的预热,从而节省废气升温过程的燃料消耗,其间应控制废气中有机物的爆炸下限在25%以内。rto处理法基本可以把非甲烷总烃转化为co2和h2o。但是,根据防火规范要求,此方法需要的安全间距较大,在高温环境中,可能会产生氮氧化物等二次污染,需要严格控制反应条件。当处理废气浓度较低时,燃料消耗较大,导致运行费用较高。
2.3.2催化氧化燃烧法。
催化氧化燃烧法主要应用于vocs浓度废气变化大且浓度高的工况,它主要是利用催化剂(温度保持在250~500℃)使vocs中的非甲烷总烃等有害物发生氧化反应,生成水和二氧化碳等无害物质,同时产生大量热量。这些热量可以用来预热反应器进口的废气,从而实现热量重复利用,降低能耗成本。当废气含有能够引起催化剂中毒的硫、卤素有机化合物时,不宜采用催化燃烧法,因此是否使用催化氧化燃烧法,人们需要考虑废气主要成分。
2.4冷凝-除雾-催化氧化法
橡胶工业产生的vocs具有排放量大、污染物浓度的特点,废气中一般含环己烷等有机废气,使用传统单一的吸附回收法无法高效治理环己烷。采用冷凝-除雾-催化氧化法治理橡胶生产过程中产生的尾气,冷凝技术利用气态污染物具有不同的饱和蒸气压,通过降低温度或加大压